Kinetics of fluid demixing in complex plasmas: Domain growth analysis using Minkowski tensors.
نویسندگان
چکیده
A molecular dynamics simulation of the demixing process of a binary complex plasma is analyzed and the role of distinct interaction potentials is discussed by using morphological Minkowski tensor analysis of the minority phase domain growth in a demixing simulated binary complex plasma. These Minkowski tensor methods are compared with previous results that utilized a power spectrum method based on the time-dependent average structure factor. It is shown that the Minkowski tensor methods are superior to the previously used power-spectrum method in the sense of higher sensitivity to changes in domain size. By analysis of the slope of the temporal evolution of Minkowski tensor measures, qualitative differences between the case of particle interaction with a single length scale compared to particle interactions with two different length scales (dominating long-range interaction) are revealed. After proper scaling the graphs for the two length scale scenarios coincide, pointing toward universal behavior. The qualitative difference in demixing scenarios is evidenced by distinct demixing behavior: in the long-range dominated cases demixing occurs in two stages. At first, neighboring particles agglomerate, then domains start to merge in cascades. However, in the case of only one interaction length scale only agglomeration but no merging of domains can be observed. Thus, Minkowski tensor analysis is likely to become a useful tool for further investigation of this (and other) demixing processes. It is capable to reveal (nonlinear) local topological properties, probing deeper than (linear) global power-spectrum analysis, however, still providing easily interpretable results founded on a solid mathematical framework.
منابع مشابه
Weighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملMinkowski tensors of anisotropic spatial structure
This paper describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the socalled Minkowski tensors. Minkowski tensors are generalizations of the wellknown scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant...
متن کاملTensor Valuations and Their Local Versions
The intrinsic volumes, recalled in the previous chapter, provide an array of size measurements for a convex body, one for each integer degree of homogeneity from 0 to n. For measurements and descriptions of other aspects, such as position, moments of the volume and of other size functionals, or anisotropy, tensor-valued functionals on convex bodies are useful. The classical approach leading to ...
متن کاملElusiveness of fluid-fluid demixing in additive hard-core mixtures.
The conjecture that when an additive hard-core mixture phase separates when one of the phases is spatially ordered, well supported by considerable evidence, is in contradiction with some simulations of a binary mixture of hard cubes on cubic lattices. By extending Rosenfeld's fundamental measure theory to lattice models we show that the phase behavior of this mixture is far more complex than si...
متن کاملA Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs
More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 94 1-1 شماره
صفحات -
تاریخ انتشار 2016